360 research outputs found

    Analysis of separation of the space shuttle orbiter from a large transport airplane

    Get PDF
    The feasibility of safely separating the space shuttle orbiter (140A/B) from the top of a large carrier vehicle (the C-5 airplane) at subsonic speeds was investigated. The longitudinal equations of motion for both vehicles were numerically integrated using a digital computer program which incorporates experimentally derived interference aerodynamic data to analyze the separation maneuver for various initial conditions. Separation of the space shuttle orbiter from a carrier vehicle was feasible for a range of dynamic-pressure and flight-path-angle conditions. By using an autopilot, the vehicle attitudes were held constant which ensured separation. Carrier-vehicle engine thrust, landing gear, and spoilers provide some flexibility in the separation maneuver

    The Aerospace Vehicle Interactive Design system

    Get PDF
    The aerospace vehicle interactive design (AVID) is a computer aided design that was developed for the conceptual and preliminary design of aerospace vehicles. The AVID system evolved from the application of several design approaches in an advanced concepts environment in which both mission requirements and vehicle configurations are continually changing. The basic AVID software facilitates the integration of independent analysis programs into a design system where the programs can be executed individually for analysis or executed in groups for design iterations and parametric studies. Programs integrated into an AVID system for launch vehicle design include geometry, aerodynamics, propulsion, flight performance, mass properties, and economics

    Perturbation theory in a pure exchange non-equilibrium economy

    Get PDF
    We develop a formalism to study linearized perturbations around the equilibria of a pure exchange economy. With the use of mean field theory techniques, we derive equations for the flow of products in an economy driven by heterogeneous preferences and probabilistic interaction between agents. We are able to show that if the economic agents have static preferences, which are also homogeneous in any of the steady states, the final wealth distribution is independent of the dynamics of the non-equilibrium theory. In particular, it is completely determined in terms of the initial conditions, and it is independent of the probability, and the network of interaction between agents. We show that the main effect of the network is to determine the relaxation time via the usual eigenvalue gap as in random walks on graphs.Comment: 7 pages, 2 figure

    Report of the Horizontal Launch Study

    Get PDF
    A study of horizontal launch concepts has been conducted. This study, jointly sponsored by the Defense Advanced Research Projects Agency (DARPA) and the National Aeronautics and Space Administration (NASA) was tasked to estimate the economic and technical viability of horizontal launch approaches. The study team identified the key parameters and critical technologies which determine mission viability and reported on the state of the art of critical technologies, along with objectives for technology development

    A Tool for the Automated Design and Evaluation of Habitat Interior Layouts

    Get PDF
    The objective of space habitat design is to minimize mass and system size while providing adequate space for all necessary equipment and a functional layout that supports crew health and productivity. Unfortunately, development and evaluation of interior layouts is often ignored during conceptual design because of the subjectivity and long times required using current evaluation methods (e.g., human-in-the-loop mockup tests and in-depth CAD evaluations). Early, more objective assessment could prevent expensive design changes that may increase vehicle mass and compromise functionality. This paper describes a new interior design evaluation method to enable early, structured consideration of habitat interior layouts. This interior layout evaluation method features a comprehensive list of quantifiable habitat layout evaluation criteria, automatic methods to measure these criteria from a geometry model, and application of systems engineering tools and numerical methods to construct a multi-objective value function measuring the overall habitat layout performance. In addition to a detailed description of this method, a C++/OpenGL software tool which has been developed to implement this method is also discussed. This tool leverages geometry modeling coupled with collision detection techniques to identify favorable layouts subject to multiple constraints and objectives (e.g., minimize mass, maximize contiguous habitable volume, maximize task performance, and minimize crew safety risks). Finally, a few habitat layout evaluation examples are described to demonstrate the effectiveness of this method and tool to influence habitat design

    Selection of Thermal Worst-Case Orbits via Modified Efficient Global Optimization

    Get PDF
    Efficient Global Optimization (EGO) was used to select orbits with worst-case hot and cold thermal environments for the Stratospheric Aerosol and Gas Experiment (SAGE) III. The SAGE III system thermal model changed substantially since the previous selection of worst-case orbits (which did not use the EGO method), so the selections were revised to ensure the worst cases are being captured. The EGO method consists of first conducting an initial set of parametric runs, generated with a space-filling Design of Experiments (DoE) method, then fitting a surrogate model to the data and searching for points of maximum Expected Improvement (EI) to conduct additional runs. The general EGO method was modified by using a multi-start optimizer to identify multiple new test points at each iteration. This modification facilitates parallel computing and decreases the burden of user interaction when the optimizer code is not integrated with the model. Thermal worst-case orbits for SAGE III were successfully identified and shown by direct comparison to be more severe than those identified in the previous selection. The EGO method is a useful tool for this application and can result in computational savings if the initial Design of Experiments (DoE) is selected appropriately

    Launch Vehicle Propulsion Design with Multiple Selection Criteria

    Get PDF
    The approach and techniques described herein define an optimization and evaluation approach for a liquid hydrogen/liquid oxygen single-stage-to-orbit system. The method uses Monte Carlo simulations, genetic algorithm solvers, a propulsion thermo-chemical code, power series regression curves for historical data, and statistical models in order to optimize a vehicle system. The system, including parameters for engine chamber pressure, area ratio, and oxidizer/fuel ratio, was modeled and optimized to determine the best design for seven separate design weight and cost cases by varying design and technology parameters. Significant model results show that a 53% increase in Design, Development, Test and Evaluation cost results in a 67% reduction in Gross Liftoff Weight. Other key findings show the sensitivity of propulsion parameters, technology factors, and cost factors and how these parameters differ when cost and weight are optimized separately. Each of the three key propulsion parameters; chamber pressure, area ratio, and oxidizer/fuel ratio, are optimized in the seven design cases and results are plotted to show impacts to engine mass and overall vehicle mass

    A Synoptic, Multiwavelength Analysis of a Large Quasar Sample

    Full text link
    We present variability and multi-wavelength photometric information for the 933 known quasars in the QUEST Variability Survey. These quasars are grouped into variable and non-variable populations based on measured variability confidence levels. In a time-limited synoptic survey, we detect an anti-correlation between redshift and the likelihood of variability. Our comparison of variability likelihood to radio, IR, and X-ray data is consistent with earlier quasar studies. Using already-known quasars as a template, we introduce a light curve morphology algorithm that provides an efficient method for discriminating variable quasars from periodic variable objects in the absence of spectroscopic information. The establishment of statistically robust trends and efficient, non-spectroscopic selection algorithms will aid in quasar identification and categorization in upcoming massive synoptic surveys. Finally, we report on three interesting variable quasars, including variability confirmation of the BL Lac candidate PKS 1222+037.Comment: AJ, accepted for publication 15 Dec 200
    corecore